

Life-cycle cost & environmental assessment of nearly zero-energy buildings (NZEBs) in four European countries

Speaker:

Ove Mørck Kuben Management A/S

Authors:

Ove Mørck and Miriam Sanchez Mayoral Gutierrez (1), Kirsten Engelund Thomsen and Kim B. Wittchen (2)

1 Kuben Management A/S

2 Danish Building Research Institute, Aalborg University

LCC & LCA calculations

Life Cycle Cost (LCC):

 The cost and value of the energy savings of each energy saving measure are added and a life cycle cost (LCC) calculation is made to reach the Net Present Value (NPV)

Life Cycle (Impact) Assessment (LCA/LCIA) of the energy saving measures covers:

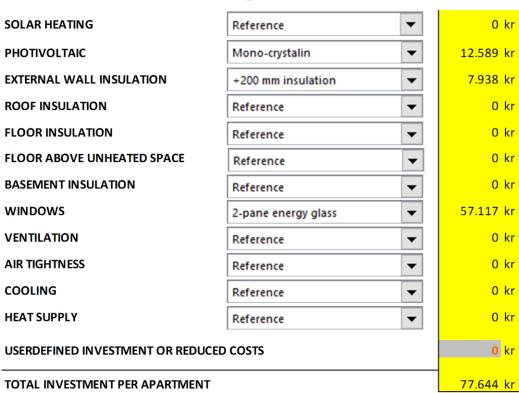
- Global warming Potential CO₂-emissions [kg CO₂-Equiv.]
- Non-renewable primary energy (NRPE) consumption MJ
- ODP, Ozone Depletion Potential [kg R11-Equiv.],
- POCP, Photochemical Ozone Creation Potential [kg Ethene-Equiv.],
- AP, Acidification Potential [kg SO2-Equiv.],
- EP, Eutrification Potential [kg Phosphate-Equiv.] and
- ADP, Abiotic Depletion Potential [kg Sb-Equiv.]

Elements included in the LCA: product stages & use

Pro	A 1-3 Product stage		A 4-5 Construction process stage		B 1-7 Use stage							C 1-4 End-of-Life				D Next product system
Raw material supply	Transport to manufacturer	Manufacturing	Transport to building site	Installation into building	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/demolition	Transport to EoL	Waste processing	Disposal	Reuse, recovery or recycling potential

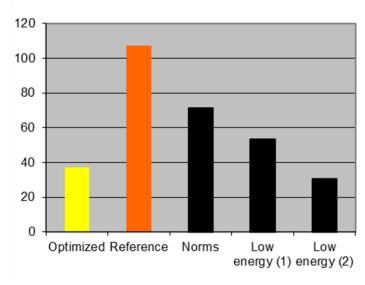
THE ASCOT_LCA CALCULATION TOOL

In one calculation step:


- Energy savings
- Cost of energy saving measures
- Financial value of savings in relation to investments (LCC)
- Life cycle impact analysis (LCIA)

Easy changes:

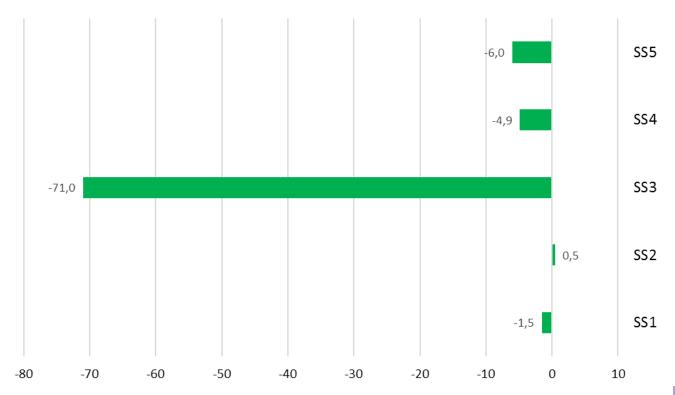
- Different building categories
- Climate use 33 existing climates in Ascot or add new climates
- Reference building for renovation or new built: Insulation level, etc.
- Building materials/component data
- Language & Currency



ASCOT LCA optimisation

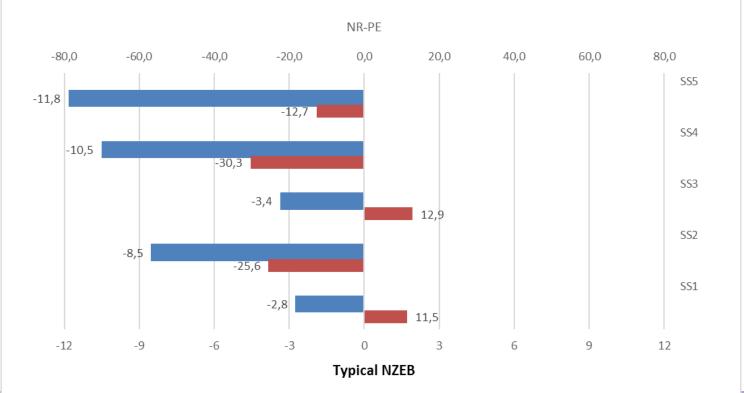
KWH/M²/YEAR

Danish Solution Sets (SS)

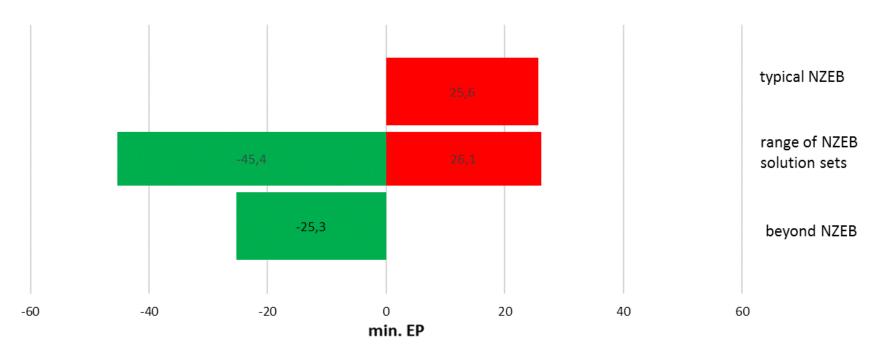


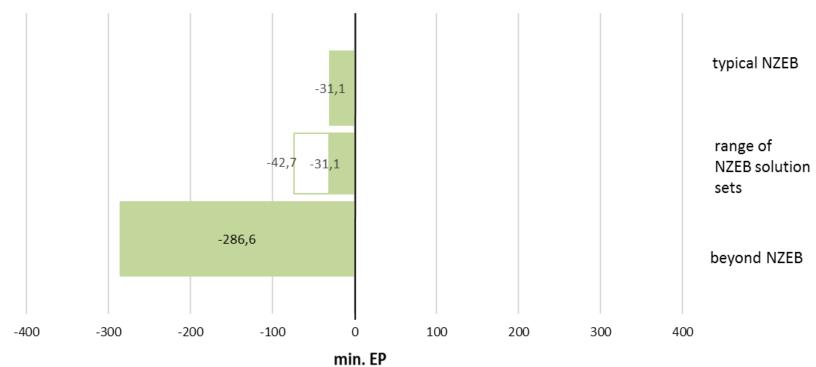
TECHNOLOGY	SS1	SS2	883	SS4	SS5
Lower lambda value of the insulation	X				
4-layer windows			X		
reduced insulation in ext. wall		X		X	X
Reduced insulation in roof		X		Х	Х
Reduced insulation in floor		X		Х	X
MVHR – decentralized				Х	Х
Natural ventilation			Х		
Energy efficient water taps				Х	
Heat recovery on grey wastewater			Х		
PV-panels on roof					Х
Solar heating		Х			

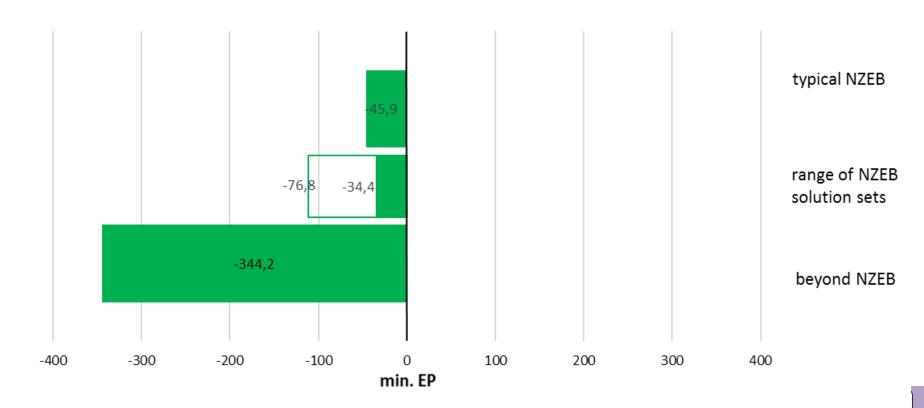
LIFE CYCLE COST for 30 years



LIFE CYCLE ANALYSIS for 30 years




GWP [kg CO2-Equiv. /m2]



1

What does it mean? Three comparisons

September, Barrings

- The GWP and energy in const Denmark,
- GWP reductions of the beyond NZEB building compared to the minimum EP in Denmark ~ the embedded energy in the construction. (NR-PE ~ 1/4)
- 2. The emissions from means and

The yearly GWP reductions from the Danish beyond NZEB example ~ 6369 person-km in a fossil fuel car.

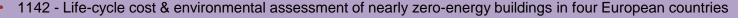
3. The CO2-reductions from planting trees.

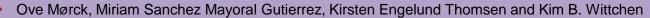
The GWP reductions of the Danish beyond NZEB house ~764 m² of forest

Thank you for your attention!

Questions and Comments

Contact:


- Ove Morck
- Kuben Management A/S
- Ellebjergvej 52, DK2450 Copenhagen SV
- E-mail: ovmo@kubenmam.dk



Disclaimer:

- The CoNZEBs project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 754046.
- The presentation reflects the author's view. The Commission is not responsible for any use that may be made of the information it contains.

